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Global capillary instability of an inclined jet
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The primary goal of the paper is to demonstrate that a circular jet of inviscid liquid,
which issues from a nozzle at an angle to the gravitational field, can sustain a self-
excited linear global mode. The mode is found for the flow that is locally convectively
unstable at every point, i.e. has no region of local absolute instability. A simple
experiment shows that the mode can evolve into a wave of finite amplitude, which is
localized in space near the nozzle.

Section 2 of the paper summarizes some recent developments in the linear theory
of stability of weakly inhomogeneous flows.

1. Introduction
The linear stability analysis of a stationary flow is usually based on the hypothesis

that the time-dependence of a small disturbance has the form exp(−iωt). The study of
the disturbance evolution is then reduced to the study of a boundary-value problem
for a system of linear differential equations. If the basic flow has either a finite length
in the streamwise direction or is inhomogeneous, the streamwise direction is also an
‘eigenvalue direction’. The flow is called globally unstable if the eigenfunction or global
mode exists for at least one eigenfrequency ω with a positive imaginary part. The
term global instability was introduced by Kulikovskii (1966) to describe instabilities
in homogeneous flows of large but finite length (see also Lifshitz & Pitaevskii 1981;
Bers 1983). The term contrasts with boundary instability, which is an instability
associated with one of the streamwise boundaries. More recently, the term was used
for the description of instabilities in weakly inhomogeneous flows (Pierrehumbert
1984; Kulikovskii 1985; Monkewitz, Huerre & Redekopp 1987; Chomaz, Huerre &
Redekopp 1988). The usage is in contrast to the concept of local instability that is a
property of some fictitious homogeneous flow corresponding to the given fixed value
of the streamwise coordinate. More details can be found in §2 of the present paper.

The capillary instability of an infinitely long jet with respect to temporally growing
disturbances was analysed by Rayleigh (1878). An inviscid jet is unstable with respect
to any axially symmetric disturbance if the wavelength is greater than the perimeter
of the jet cross-section. Keller, Rubinow & Tu (1973) analysed the capillary instability
of a circular jet with respect to spatially growing disturbances. (A summary of the
results can be also found in the reviews by Bogy 1979 and Ashgriz & Mashayek
1995.) The absolute and convective types of instability of a circular cylindrical jet
with respect to axially symmetric disturbances were investigated analytically by Leib
& Goldstein (1986a), Monkewitz (1990), and experimentally by Monkewitz et al.
(1988). They have found that the Weber number used to distinguish absolute from
convective instability depends on the shape of the axial velocity profile of the basic
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flow. A change in the effective value of the surface tension can also be achieved by
the inertia of the surrounding medium and the liquid viscosity if they are taken into
account (Leib & Goldstein 1986b; Lin & Lian 1989; Monkewitz 1990).

Global instability of a homogeneous jet of large but finite length was analysed
by Yakubenko (1997). The flow can be globally unstable even if the corresponding
infinitely long jet is convectively unstable. Global instability of a jet that flows
downward from a nozzle has been discussed by Monkewitz (1990) and Le Dizès
(1996). The global instability is caused by a region of local absolute instability, which
can appear near the nozzle. In the present paper, a global instability analysis is
performed for an inclined circular jet that has no region of local absolute instability.

2. Global modes in weakly inhomogeneous flows
The streamwise spatial development of the basic flow can be characterized by a

length scale L, and the local instability can be characterized by a typical wavelength
λ. The parameter ε = λ/L is a measure of the spatial inhomogeneity of the flow in
terms of the disturbance propagation. If ε � 1, the basic flow depends only on the
slow streamwise coordinate X = εx and is usually called weakly inhomogeneous.

Any global mode of frequency ω can be asymptotically represented when ε→ 0 by

∞∑
q=0

{∑
p

Cp
[
εqAp,q (X, r;ω)

]
exp

[
iε−1

∫ X

Xp

kp (ω, ξ) dξ

]}
, (2.1)

in which Cp are arbitrary constants, and branches kp (ω,X) of the local wavenumber
are found from the local dispersion relation

D (k, ω;X) = 0.

For each value of p, functions Ap,q (X, r;ω) can be computed recursively up to any q.
The first term in the series (2.1)∑

p

CpAp,0 (X, r;ω) exp

[
iε−1

∫ X

Xp

kp (ω, ξ) dξ

]
(2.2)

is usually called the WKBJ approximation. The foregoing approach originates from
quantum mechanics. It was adapted for stability investigations by Silin (1963) and
Krall & Rosenbluth (1963) in plasma physics. More recently, it was used in fluid
dynamics (e.g. Drazin 1974; Crighton & Gaster 1976).

In the general case, no single expression of form (2.2) approximates the solution
for the entire real X-axis (or complex X-plane). Thus, the approximation fails in the
neighbourhood of the so-called turning points Xm,n that are solutions of the equation

km (ω,X) = kn (ω,X) , (2.3)

in which ω is a parameter. However, the approximation can be composed of several
different linear combinations of form (2.2) at different domains of the complex
X-plane.

We will refer to the lines defined from

Im

{∫ X

Xm,n

[km (ω, ξ)− kn (ω, ξ)] dξ

}
= 0,
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Figure 1. Solid and dashed lines are Stokes and anti-Stokes lines, respectively. The branch cut is
shown by the hatched line.

in which ω is a parameter, as the Stokes lines, and from

Re

{∫ X

Xm,n

[km (ω, ξ)− kn (ω, ξ)] dξ

}
= 0

as the anti-Stokes lines. These names are often used vice versa (e.g. Heading 1962;
Meyer 1989). The present order is typical for modern fluid dynamics (e.g. Huerre &
Monkewitz 1990; Le Dizès et al. 1996).

Let Xm,n be a single turning point, i.e. a single root of (2.3). Then, three Stokes lines
emerge from it (see figure 1). The lines locally split the complex X-plane into three
sectors. The bisectrix of each sector is the anti-Stokes line. The solution

Km = Am,0 (X, r;ω) exp

[
iε−1

∫ X

Xm,n

km (ω, ξ) dξ

]
is called dominant (in sector Sj) if it is exponentially large with respect to Kn, the
latter then being called subdominant. (The maximum domination is reached at the
anti-Stokes line inside Sj .) At the Stokes lines, both solutions are of the same order
of magnitude.

Let Km be dominant in sector S1, and the global mode be approximated by

CmKm + CnKn, (2.4)

at the Stokes line l2 (see figure 1). If the solution is formally continued from l2 into
the sector S1, the term CnKn may become small compared to the truncated part of
the series (2.1). Strictly speaking, any value could be prescribed then to the coefficient
Cn inside S1. However, at the line l3, both solutions again have the same order of
magnitude. Moreover, in sector S2, solution Kn is dominant.

In order to construct an approximation that is valid in all three sectors, Stokes
(1857) suggested the following procedure. As the approximation (2.4) is continued
from l2 to l3 through sector S1, coefficient Cm remains unchanged, while Cn changes
to Cn + TCm, in which T is called the Stokes constant.
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In the above example, T = −i. In the general case, the value of T depends on the
type of turning point; its magnitude is typically of order unity. If the approximation
is continued around the turning point in the opposite direction, T changes to −T .
Note that Cn remains unchanged if Cm = 0, i.e. if only a subdominant solution must
be used in S1 for some reason.

The jump in the coefficient at the subdominant solution is often called the Stokes
phenomenon. Stokes (1857) found that the jump must occur at the anti-Stokes line
inside the sector if one wants to compute the series (2.1) with maximum accuracy.
Since the WKBJ approximation takes into account only the first term in the series,
the jump could actually be performed at any line inside the sector. However, the
anti-Stokes line is usually chosen for convenience.

If k (ω,X) has more than two branches, several sets of the Stokes and anti-Stokes
lines can exist. The sets are independent. Thus, the lines from different sets may
intersect at any point and even coincide, yet the lines belonging to the same set may
intersect only at turning points. (A procedure that helps to locate the lines is discussed
in the Appendix.)

Hence, the complex X-plane is divided by the network of anti-Stokes lines into
domains where the global mode may be approximated by different linear combinations
of elementary WKBJ solutions. If the real X-axis crosses the boundaries of these
domains, it is divided into segments. Linear Stokes relations link the coefficients at
the elementary WKBJ solutions for each pair of the consequent segments. Thus, the
ends of the segments can be considered as points (within the flow) at which boundary
conditions are specified. We will refer to them as points of inner reflection.

Hence, the global mode is a sequence of linear combinations of the elementary
WKBJ solutions. The combinations are connected by the physical boundary con-
ditions on the streamwise boundaries of the flow and by the additional boundary
conditions that are the Stokes relations at the points at which the real X-axis crosses
the anti-Stokes lines.

Let us introduce the following notations:

Kα
n ≡ An,0 (X, r;ω) exp

[
iε−1

∫ X

Xα

kn (ω, ξ) dξ

]
,

Qα,βn ≡ exp

[
iε−1

∫ Xβ

Xα

kn (ω, ξ) dξ

]
.

We will refer to Kα
n as an elementary WKBJ wave propagating from X = Xα, and to

Qα,βn as a spatial amplification coefficient of the wave Kα
n at the interval

[
Xα,Xβ

]
.

If the flow model satisfies causality, a constant M > 0 exists such that for Im (ω) >
M, one has Im

[
kp (ω,X)

]
6= 0 for every p and any value of X. Thus, all branches

of the local wavenumber can be split into two groups according to the signs of
their imaginary parts for Im (ω) > M. The waves corresponding to the branches
with positive and negative imaginary parts propagate to the right and to the left,
respectively. For any frequency ω with Im (ω) > M, every wave is spatially damped
in its direction of propagation.

At each boundary point X = Xβ , the boundary conditions can be expressed in the
following form:

Cβ
m =

∑
n

P β
n,mQ

α,β
n C

α
n , (2.5)

in which Pβ
n,m is referred to as the conversion coefficient for the incoming wave Kn
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and the outgoing wave Km at the point X = Xβ . At the physical boundaries of the
flow, the conversion coefficients are typically of order unity and independent of the
frequency ω. At the points of inner reflection, they can be calculated as follows.

Let Xβ be a point where the real X-axis crosses the anti-Stokes line that emerges
from the turning point Xm,n that corresponds to the branches km (ω,X) and kn (ω,X).

If the solution Km is dominant at the line, then Pβ
j,j = 1 for any j and Pβ

j,i = 0 for any
i 6= j except

Pβ
m,n = TRβm,n,

in which T is the Stokes constant associated with the turning point Xm,n, and

Rβm,n = exp

{
iε−1

∫ Xm,n

Xβ

[km (ω, ξ)− kn (ω, ξ)] dξ

}
. (2.6)

Since the integration in (2.6) is performed along the anti-Stokes line, the equation can
be rewritten as

Rβm,n = exp

{
−ε−1Im

∫ Xm,n

Xβ

[km (ω, ξ)− kn (ω, ξ)] dξ

}
.

If the turning point Xm,n is located at the real X-axis, i.e. if Xβ coincides with Xm,n,
then Rβm,n = 1. If the distance between Xβ and Xm,n is large, then

∣∣Rβm,n∣∣ � 1 so that∣∣Pβ
m,n

∣∣� 1. Hence, the wave interaction caused by turning points that are located far
away from the real axis is weak and often can be neglected.

The following frequency selection criterion for the global modes has been ob-
tained by Kulikovskii (1985). If for some frequency ω∗, there exists a cyclic sequence
of elementary WKBJ waves Km1

, ..., KmN that are consequently converted from one
to another at points X1, ..., XN , and the total product of their space amplification
coefficients and their conversion coefficients equals unity, i.e.

N−1∏
j=1

[
Qj,j+1
mj

(
ω∗
)
P j+1
mj ,mj+1

(
ω∗
)]
QN,1mN

(
ω∗
)
P 1
mN,m1

(
ω∗
)

= 1, (2.7)

then there exists a global frequency

ω = ω∗ + O(ε).

In particular, the flow is globally unstable if Im (ω∗) is positive and sufficiently large.
At least two points among X1, ..., XN must be different. The numbers m1, ..., mN are
not necessarily all different, yet at least two of them must be different, since a
cyclic sequence involves at least two waves that propagate in opposite directions.
The sequence forms a ‘skeleton’ of the global mode; it may involve a part of those
elementary waves that form the global mode. For instance, the typical situation
for infinite and semi-infinite flows is that some waves propagate to infinity without
interacting with the other ones.

For homogeneous flows of large but finite length, the global mode is based on a
pair of waves that are enclosed between the flow boundaries. The frequency selection
criterion (2.7) takes the following simple form (Kulikovskii 1966):

min
m

{
Im
[
km
(
ω∗
)]}

= max
n

{
Im
[
kn
(
ω∗
)]}

,

in which the minimum and maximum are taken among the waves propagating to the
right and left, respectively. Absolute instability is sufficient but not necessary for the
flow to be globally instable (e.g. Yakubenko 1997).
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In many cases of weakly inhomogeneous flows, the global mode can be based on a
pair of waves that propagate in opposite directions. For semi-infinite flows, the waves
are enclosed between the boundary and a point of inner reflection (e.g. Monkewitz,
Huerre & Chomaz 1993). For double-infinite flows, they are enclosed between two
points of inner reflection. The global frequencies can then be found from the so-called
quantization relation (Silin 1963; Le Dizès et al. 1996)

1

2ε

∫ X2

X1

[
km
(
ω∗, ξ

)
− kn

(
ω∗, ξ

)]
dξ = π(l + 1

2
),

in which l is an arbitrary integer, and the integration is performed in the complex
X-plane between two turning points X1 and X2. However, the proper choice of the
points still requires the investigation of the topological structure of the Stokes lines.
The investigation can be a difficult task even for a second-order differential equation
(Dnestrovskii & Kostomarov 1964; Le Dizès et al. 1996). However, some of the global
frequencies can often be found by making use of the local properties of the system.
One can define the local absolute frequency ω0 (X) that has the maximal imaginary
part among solutions of the equation

km (ω,X) = kn (ω,X) ,

in which X is a parameter. (Additionally, the waves Km and Kn must propagate in
opposite directions, e.g. Bers 1983.) One of the global frequencies is approximately
ω0 (Xs), in which Xs is a saddle point of the local absolute frequency, i.e. a solution
of the equation

dω0

dX
(X) = 0, (2.8)

such that Im
[
d2ω0/dX

2 (Xs)
]
< 0 (Chomaz, Huerre & Redekopp 1991). The flow is

then globally unstable if Im [ω0 (Xs)] > 0, which implies that the flow has a region
of local absolute instability. (This region must be actually larger than some arbitrary
size.) In the general case, the presence of a local absolute instability region is a
necessary but not sufficient condition for instability of global modes associated with
saddle points of the local absolute frequency (Huerre & Monkewitz 1990; Chomaz et
al. 1991; Hunt & Crighton 1991). Equation (2.8) can be rewritten as

∂ω

∂k
(ks, Xs) =

∂ω

∂X
(ks, Xs) = 0.

The simultaneous saddle point of the local frequency ω (k, X) on the complex k- and
X-planes is a stationary point of the complex Hamilton equations that represent the
disturbance evolution as a trajectory in the (k, X) complex space (Iordanskii 1988).

The existence of the unstable global modes based on a sequence of more than
two elementary WKBJ waves has no relation at all to the local absolute/convective
instability of the flow under consideration. For example, a globally unstable system
that is double-infinite and locally convectively unstable has been found by Kulikovskii
(1993) in his studies of the transverse oscillations of an elastic tube conveying fluid.
In the present paper, a self-excited global mode is found for a semi-infinite jet that is
locally convectively unstable at every point.
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Figure 2. Flow geometry.

3. Instability of an inclined jet
3.1. Formulation of the problem

The flow under consideration is a jet of liquid that is incompressible and inviscid.
The jet issues from a nozzle with a circular opening of radius R0. The initial velocity
V0 is constant across the nozzle opening; its vector is inclined at an angle α to the
horizontal, see figure 2. (Only the case α > 0, which means the jet moves upward
from the nozzle, is considered.) The influence of the surrounding medium is assumed
to be negligible.

The length scale of the basic-flow streamwise development L can be taken as the
distance between the nozzle and the highest point of the jet trajectory; it can be
expressed then as L ∼ V 2

0 g
−1, in which g is the acceleration due to gravity. The jet

can be treated (locally) as an axially symmetric flow if

R0 � min (L, R∗) , (3.1)

in which R∗ is the typical radius of curvature of the jet centreline (Entov & Yarin
1984). If condition (3.1) is met, the basic flow is weakly inhomogeneous, since the
typical wavelength of the local capillary instability is of order R0. If the Froude
number is introduced as Fr = V0 (gR0)

−1, condition (3.1) leads to

Fr� 1, (3.2)

which indicates that the inertial forces dominate the gravity forces.
In the simplest approximation, the basic flow is assumed not to be affected by the

capillary forces. Then, the jet centreline is similar to the trajectory of a stone thrown
at an angle to the horizon (Tuck 1976), i.e.

z − z0 = tan (α)
(
x− x0

)
−

(
x− x0

)2

2Fr2 cos2 (α)
,

in which the horizontal and vertical coordinates x and z are made dimensionless by
R0, and the nozzle position is

(
x0, z0

)
. If the basic axial velocity is constant over each
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cross-section, the velocity and radius in the dimensionless form are given by

V (X) =

[
1− 2 tan (α)

(
X −X0

)
+

(
X −X0

)2

cos2 (α)

]1/2

,

R (X) = [V (X)]−1/2 ,

in which the slow coordinate is X = Fr−2x. Condition (3.2) is then replaced by

Fr� cos−5/4 (α) . (3.3)

If the viscous effects are taken into account, the basic flow can be calculated numeri-
cally (Goodwin & Schowalter 1994).

In contrast to the basic flow, the disturbances are assumed not to be affected by
the gravity force. The local dispersion relation for axially symmetric disturbances can
be represented in the following form:(

ω
R

V
− G

)2

= We
G
(
G2 − 1

)
I1 (G)

I0 (G)
, (3.4)

in which

G (k, X) ≡ sign [Re (k)] kR (X) , (3.5)

ω and k are made dimensionless by R0 and V0, and I0 (G) and I1 (G) are the modified
Bessel functions. The local Weber number is introduced as

We (X) ≡ We0

R (X)V 2 (X)
,

in which We0 ≡ σ
(
ρR0V

2
0

)−1
is the Weber number at the nozzle; σ and ρ are the

surface tension coefficient and the mass density of the liquid.
Equation (3.4) is a generalization of the famous dispersion relation of Rayleigh

(1878) to the case of a spatially developing basic flow. Equation (3.5) implies that the
dispersion relation is symmetric about the imaginary k-axis, so that one need consider
only the half-plane Re (k) > 0. (The origin in the complex k-plane is a double branch
point with two branch cuts along the positive and negative imaginary k half-axes.)

The dispersion relation yields two branches of the local frequency

ω =
V

R

G±
[

We
G
(
G2 − 1

)
I1 (G)

I0 (G)

]1/2
 .

For real X and real k > 0, only one of the branches is ‘temporally unstable’, i.e. has
values with positive imaginary parts. The region of unstable local wavenumbers is a
single interval 0 < k < k∗ (X), in which k∗ (X) ≡ R−1 (X) is a branch point of the
local frequency.

In contrast to the frequency, the local wavenumber cannot be explicitly expressed
from the dispersion relation. However, one can show that it has an infinite number
of branches (Keller et al. 1973; Yakubenko 1997).

Dispersion relation (3.4) leads to the local absolute instability condition

We > Weabs. (3.6)

In the general case, Weabs depends on the shape of the profile of the mean axial
velocity. For the present case of the uniform profile, Weabs ≈ 0.32 (Leib & Goldstein
1986a; Monkewitz et al. 1988).
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Figure 3. Typical contour plot of Im [ω (k)] in the cases of (a) local absolute instability (We = 0.4)
and (b) local convective instability (We = 0.3). The solid, dashed, and bold lines are for positive,
negative and zero values of Im [ω (k)], respectively. The branch cut is shown by the hatched line. The
domains marked by km correspond to different branches of the wavenumber for large Im (ω) > 0.

3.2. Global stability analysis

The local Weber number reaches the maximum We0 cos−3/2 (α) at the highest point
of the jet trajectory

Xmax = X0 + sin (α) cos (α) .

Thus, the flow has no region of local absolute instability if

We0 < Weabs cos3/2 (α) . (3.7)

Only this case is analysed in the present paper.
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Figure 4. Typical local dispersion curve for real X. The parts of the curve corresponding to
different branches of the wavenumber are marked by km.

A typical contour plot of Im [ω (k, X)] on the complex k-plane is shown in figures
3(a) and 3(b) for the cases of local absolute and convective instability, respectively.
Two saddle points determine the type of instability. The saddle points correspond on
the complex ω-plane to the branch points of three branches of the local wavenumber:
k1 (ω,X), k2 (ω,X), and k−1 (ω,X). For large Im (ω) > 0, one has Im [k1 (ω,X)] > 0,
Im [k2 (ω,X)] > 0, and Im [k−1 (ω,X)] < 0. Thus, the waves K1 and K2 propagate
to the right, i.e. downstream, and the wave K−1 propagates to the left, i.e. upstream.
Note that for Im (ω) > 0, only k1 (ω,X) can have values with imaginary parts of
different signs. Hence, only the wave K1 can be spatially amplified in its direction of
propagation for Im (ω) > 0.

The boundary conditions at the nozzle are assumed to be such that one can find
the amplitude of every outgoing wave from the given amplitudes of the incoming
waves. Additionally, no disturbance is assumed to come upstream from infinity.

For a real value of X, the typical dispersion curve Re [km (ω,X)] vs. Re (ω) is shown
in figure 4. As X increases from X0 to Xmax, both local absolute frequencies ω1,2 (X)
and ω−1,2 (X) decrease. For X > Xmax, the situation is symmetric. For any real X, one
has

0 < ω1,2 (X) < ω−1,2 (X) ,

k∗ (X) < k1,2 (X) < k−1,2 (X) .

For any real frequency ω such that

ω−1,2 (Xmax) < ω < ω1,2

(
X0
)
,

two pairs of turning points X1,2 (ω), X−1,2 (ω) and X̃1,2 (ω), X̃−1,2 (ω) are located at
the real X-axis symmetrically around X = Xmax. Additionally, two turning points
X−1,1 (ω) and X̃−1,1 (ω) are located in the complex X-plane symmetrically around
X = Xmax. Three sets of the corresponding Stokes lines are shown in figure 5.

For Im (ω) > 0, the turning points move from the real X-axis into the complex
plane. For sufficiently small Im (ω) > 0, the corresponding Stokes and anti-Stokes
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Figure 5. The solid and dashed lines sketch the Stokes and anti-Stokes lines for Im (ω) = 0, which
correspond to the branches: (a) K1 and K2, (b) K−1 and K2, and (c) K−1 and K1. The branch cuts
are shown by the hatched lines. The arrows show the directions in which the approximations are
continued.

lines are similar to that shown in figure 6. Thus, the real X-axis crosses six anti-Stokes
lines at the points X1, ..., X6. For Im (ω) = 0, the points X1, X2, X5, and X6 coincide
with the turning points X1,2, X−1,2, X̃−1,2 and X̃1,2, respectively. In the following
treatment, we assume that the structure of the Stokes and anti-Stoked lines is never
topologically changed with respect to both the real X-axis and the position of the
origin X0.

Note that the transition from Im (ω) = 0 to Im (ω) > 0 changes the line’s structure.
Thus, for Im (ω) = 0, there is the anti-Stokes line that connects the turning points
X−1,2 and X̃−1,2 (figure 5b). For stability analysis, we need to investigate only the case
Im (ω) > 0. Moreover, we assume that the turning points are sufficiently far from each
other, and the Stokes relations can be applied independently at each turning point.

The global mode is approximated by the following linear combinations of three
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Figure 6. The solid and dashed lines sketch the Stokes and anti-Stokes lines for Im (ω) > 0, which
correspond to the branches: (a) K1 and K2, (b) K−1 and K2, and (c) K−1 and K1. The branch cuts
are shown by the hatched lines.

elementary waves K1, K2, and K−1:

C
p
1K

p
2 + C

p
2K

p
2 + C

q
−1K

q
−1

at [Xp,Xq], in which p = 0, . . . , 6 and q = 1, . . . , 6,+∞.
The boundary conditions at the nozzle (X = X0) can be expressed in the following

form:

C0
1 = P 0

−1,1Q
1,0
−1C

1
−1, (3.8)

C0
2 = P 0

−1,2Q
1,0
−1C

1
−1. (3.9)

The conversion coefficients P 0
−1,1 and P 0

−1,2 are assumed to be of order unity.

For ω−1,2 (Xmax) < Re (ω) < ω1,2

(
X0
)
, typical plots of Im [km (ω,X)] vs. Re (X) are

shown in figures 7(a) and 7(b) for the cases Im (ω) = 0 and Im (ω) > 0, respectively.
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Re(X )

Im(k )

X 0

X–1, 2

0

(a)

Xmax

2

1

X1, 2

2

2

1

X–1, 2 X1, 2

–1

~ ~

Re(X )

Im(k )

X 0

0

(b)

Xmax

1

2

–1

Figure 7. Typical plot of Im [km (ω,X)] vs. real X for the case of (a) Im (ω) = 0; (b) Im (ω) > 0.
Different branches of the wavenumber are marked by the value of m.

For each turning point, these plots help to establish which WKBJ solution is dominant
in which of the corresponding Stokes sectors.

The Stokes relations give the following additional boundary conditions at
X = X1 :

Q
0,1
1 C

0
1 = C1

1 , (3.10)

Q
0,1
2 C

0
2 = C1

2 + iR1
1,2C

1
1 , (3.11)

C1
−1 = Q

2,1
−1C

2
−1; (3.12)
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X = X2 :

C2
1 = Q

1,2
1 C

1
1 , (3.13)

C2
2 = Q

1,2
2 C

1
2 , (3.14)

Q
3,2
−1C

3
−1 = C2

−1 − iR2
2,−1Q

1,2
2 C

1
2 ; (3.15)

X = X5 :

C5
1 = Q

4,5
1 C

4
1 , (3.16)

Q
4,5
2 C

4
2 = C5

2 − iR5
−1,2Q

6,5
−1C

6
−1, (3.17)

C5
−1 = Q

6,5
−1C

6
−1; (3.18)

X = X6 :

C6
1 = Q

5,6
1 C

5
1 + iR6

2,1Q
5,6
2 C

5
2 , (3.19)

C6
2 = Q

5,6
2 C

5
2 , (3.20)

C6
−1 = Q

+∞,6
−1 C+∞

1 , (3.21)

in which R1
1,2, R

2
2,−1, R

5
−1,2 and R6

2,1 are given by (2.6) with the upper integration limit

taken as X1,2, X−1,2, X̃−1,2 and X̃1,2, respectively.
The directions in which the solutions are continued around the turning points

are shown in figure 5. Equations (3.10)–(3.21) are written in the form that serves
to emphasize these directions. Note that for Im (ω) = 0, an extra relation would be
required at the anti-Stokes line that connects the turning points X−1,2 and X̃−1,2.

Since no disturbance comes upstream from infinity, one must have C+∞
−1 = 0.

Equations (3.21) and (3.18) then give

C5
−1 = C6

−1 = 0,

and (3.17) becomes

C5
2 = Q

4,5
2 C

4
2 . (3.22)

Owing to the structure of the Stokes and anti-Stokes lines, the wave K2 does not
interact with the other waves in the interval

(
X3, X4

)
. Therefore,

C4
2 = Q

3,4
2 C

3
2 . (3.23)

However, the waves K1 and K−1 may interact. Strictly speaking, the matching of the
WKBJ solutions around a turning point must be always started from a narrow sector
that contains the Stokes line. Therefore, the interaction of K1 and K−1 cannot be
accounted for in a simple way similar to (3.10)–(3.21).

Fortunately, the structure of the corresponding Stokes and anti-Stokes lines re-
sembles the problem of particle scattering from the underdense potential barrier (see,
e.g. Heading 1962, §5.3). Thus, the interaction is weakening exponentially with the
distance between the real X-axis and the turning point X−1,1 (or X̃−1,1). Since for

Im (ω) > 0, the turning points X−1,1 and X̃−1,1 are located relatively far away from
the real axis, we neglect the interaction and simply write

C5
1 = Q

2,5
1 C

2
1 , C3

−1 = Q
5,3
−1C

5
−1 = 0. (3.24)

Then, (3.15) simplifies to

0 = C2
−1 − iR2

2,−1Q
1,2
2 C

1
2 . (3.25)
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Equations (3.8)–(3.12) and (3.25) form a system of six homogeneous linear algebraic
equations for C0

1 , C0
2 , C1

1 , C1
2 , C1

−1, and C2
−1. The system can have a non-trivial solution

only if its determinant is zero, which gives the following equation for the global
frequencies:

∆ (ω) ≡ Q0,1
1 R

1
1,2Q

1,2
2 R

2
2,−1Q

2,0
−1P

0
−1,1 + iQ0,1

2 Q
1,2
2 R

2
2,−1Q

2,0
−1P

0
−1,2 = 1. (3.26)

If 0 < Im (ω) � 1, then R2
2,−1, R

1
1,2, Q

2,0
−1, and Q

1,2
2 are of unit order of magnitude,

while
∣∣∣Q0,1

1

∣∣∣� 1 and
∣∣∣Q0,1

2

∣∣∣� 1. Therefore, |∆ (ω)| � 1 and (3.26) has no solution.

As Im (ω) increases, all R2
2,−1, R

1
1,2, Q

2,0
−1, Q

1,2
2 , Q0,1

1 , and Q
0,1
2 decrease in magnitude.

(For Im (ω) � 1, every wave is spatially damped in its direction of propagation, so
that every

∣∣Qi,jm ∣∣ � 1.) Then, one can easily choose Im (ω) > 0 such that (3.26) is
satisfied.

Moreover, the amplification of the wave K1 at
[
X0, X1

]
is∣∣∣Q0,1

1

∣∣∣ ∼ exp
(
X1 −X0

)
.

Therefore, it decreases if X1 gets close to the orifice X0, which occurs if Re (ω)
approaches ω1,2

(
X0
)
. Since the required structure of the Stokes and anti-Stokes lines

is kept only for sufficiently small Im (ω) > 0, one can expect global frequencies with
Re (ω) close to ω1,2

(
X0
)
.

The unstable global mode is constructed above for frequencies such that

ω−1,2 (Xmax) < Re (ω) < ω1,2

(
X0
)
.

The sufficient condition of global instability can be expressed as the following implicit
relation between α and We0:

ω−1,2

[
X0 + sin (α) cos (α) ,We0

]
< ω1,2

(
X0,We0

)
. (3.27)

In figure 8, the domain of global instability is represented on the (α,We0)-plane. The
presence of a local absolute instability region is not necessary for the flow to be
globally unstable. (Although the result is shown for α from 0 to π/2, the values very
close to π/2 are inappropriate because of (3.3).)

For the global frequencies, one must have

Q
0,1
1 R

1
1,2Q

1,2
2 R

2
2,−1Q

2,0
−1P

0
−1,1 ≈ 1,

which implies a sequence of three wave: K1 at
[
X0, X1

]
, K2 at

[
X1, X2

]
, and K−1

at
[
X2, X0

]
. The waves are consequently converted from one into the other, and the

total product of their space amplification coefficients and their conversion coefficients
is of order unity. Thus, the result is of agreement with the general criterion of global
instability (2.7).

The second term in ∆ (ω) can be rewritten as iQ0,2
2 R

2
2,−1Q

2,0
−1P

0
−1,2. It corresponds to

a sequence of two waves: K2 at
[
X0, X2

]
and K−1 at

[
X2, X0

]
. However, this sequence

never evolves into a global mode, since the required amplitude balance cannot be
achieved.

If C1
1 and C1

2 are found, equations (3.13), (3.14), (3.16), (3.19), (3.20), and (3.22)–
(3.24) straightforwardly give

C6
2 = Q

1,6
2 C

1
2 ,

C6
1 = Q

1,6
1 C

1
1 + iR6

2,1Q
1,6
2 C

1
2 .
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α

We0

0.32

Instability

0.16

0 π /4 π /2

Figure 8. The jet is globally unstable for the domain above the solid line; the local instability is
convective for the domain below the dashed line.

Note that the wave K1 spatially grows downstream from X = X6. As its amplitude
becomes finite, the disturbance develops nonlinearly and causes the jet to break up
into drops far downstream from the nozzle. No disturbance is assumed to come back
upstream from that ‘nonlinear zone’.

Finally, the eigenvalue relation (3.26) can be rewritten as

∆ (ω) = R0
1,2R

0
2,−1P

0
−1,1 + iR0

2,−1P
0
−1,2 = 1. (3.28)

Thus, ∆ (ω) is can be exponentially large or small depending on the position of the
orifice X0 with respect to the turning points and Stokes lines. Although (3.28) looks
simpler than (3.26), the latter allows a more transparent physical interpretation in
terms of the wave propagation.

3.3. Experimental observation of the instability

A simple experiment was performed in order to observe the global instability. A jet of
water issued from a nozzle that was located on an inclined sidewall of a large tank.
The upper side of the tank was open to the atmosphere so that the water level in
the tank dropped slowly. Thus, the basic flow was quasi-stationary. The initial water
level in the tank was such that the Weber number at the nozzle We0 was very small
so that the flow was stable (figure 9a).

As the water level decreased, We0 reached the critical value, and the axially
symmetric global mode began to grow (figure 9b). When its amplitude had increased
sufficiently, the disturbance started to evolve nonlinearly. Then, besides the axially
symmetric mode, torsional and bending disturbances were excited (figure 9c). Further
nonlinear evolution of the disturbances caused the flow to oscillate quasi-periodically
with a finite amplitude. In all the cases shown in figure 9(a–c), the estimated maximum
value of the local Weber number is less than 0.25. According to the theory, the
local instability can be absolute only for local Weber numbers above 0.32. Thus,
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(a)

3 cm

3 cm0

(b)

3 cm

3 cm0

(c)

3 cm

3 cm0

Figure 9. Experimental observation of instability of an inclined jet of water: (a) stable flow;
(b) axially symmetric global mode starts to grow; (c) developed instability. In all three cases,
R0 = 1.5 mm and α = π/3.
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the experiment has confirmed the theoretical conclusion that a jet that is locally
convectively unstable can sustain a self-excited global mode.

In real jets, the axial velocity profile often diverges from uniform near the nozzle, yet
it approaches the uniform state farther downstream. Such relaxation of the velocity
profile can be modelled by a sequence of parabolic Poiseuille-type profiles. The critical
value of the local Weber number, above which the instability is absolute, is greater
for such profiles than for the uniform one (Leib & Goldstein 1986a). Thus, one can
say that a jet with the relaxing profile is locally ‘more’ convectively unstable. The
effect can change the range of global frequencies, but it does not eliminate them.

4. Conclusions
A global linear stability analysis is performed for an inviscid circular jet that issues

from a nozzle at an angle to the gravitational field. A self-excited global mode is
found for the flow that is locally convectively unstable at every point. The global
mode is based on a combination of three elementary WKBJ solutions. The nozzle
plays an essential role in the mode formation.

A simple experiment proves the existence of the mode and shows that it can evolve
into a wave of finite amplitude that is localized in space near the nozzle.

The author thanks G. A. Shugai, A. G. Kulikovskii, I. S. Shikina and, especially, S.
Le Dizès for numerous comments and discussions.

Appendix A. How to locate the Stokes lines
First, all turning points must be found. They are given by the simultaneous solutions

of the dispersion relation and its k-derivative, i.e.

D(k, ω,X) = 0, Dk(k, ω,X) = 0,

in which ω is a parameter.
The Stokes lines that emerge from the turning point Xm,n are defined by the relation

G(X) ≡ Im [F(X)] = 0

with

F(X) ≡
∫ X

Xm,n

[km (ω, ξ)− kn (ω, ξ)] dξ,

in which ω is a parameter. If X = Xr + iXi, then (−∂G/∂Xi, ∂G/∂Xr) is a vector field
that is tangential to the curves G(X) = const. Since F(X) is an analytic function,

∂G

∂Xi

=
∂

∂Xr

Re (F) =
∂

∂Xi

Im (F) .

Hence, the curves G(X) = const are integral curves of the differential equation

dXi

dXr

= − ∂

∂Xr

Im (F)

/
∂

∂Xr

Re (F) .

Since

∂

∂Xr

[Re (F) + i Im (F)] =
∂F

∂Xr

=
∂F

∂X

= Re [km (ω,X)− kn (ω,X)] + i Im [km (ω,X)− kn (ω,X)] ,
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the differential equation can be rewritten as

dXi

dXr

= −Im [km (ω,X)− kn (ω,X)]

Re [km (ω,X)− kn (ω,X)]
.

If kj (ω,X) cannot be explicitly expressed from the dispersion relation, it can be
calculated from the following differential equation:

dkj
dX

= −DX(kj , ω,X)

Dk(kj , ω,X)
,

in which the subscripts k and X stand for k- and X-derivatives, respectively, and ω
is a parameter. Finally, one has a system of three ordinary differential equations

dXi

dXr

= −Im (km − kn)
Re (km − kn)

,

dkm
dXr

= −DX(km, ω,Xr + iXi)

Dk(km, ω,Xr + iXi)
,

dkn
dXr

= −DX(kn, ω,Xr + iXi)

Dk(kn, ω,Xr + iXi)
,

in which ω is a parameter. By the theorem of uniqueness, exactly one curve G(X) =
const passes through each point except the turning points Xm,n.

If Xm,n is a turning point of order s, it is a common point of s+ 2 distinct Stokes
lines. Neighbouring lines meet at the angle 2π/(s+ 2) (see e.g. Wasow 1985). The rule
helps to localize the Stokes lines after the turning points are found and the contour
plot of G(X) is performed. It should be mentioned that the turning points are branch
points of G(X). Therefore, the branch cuts must be taken into account.

Finally, the sets of Stokes lines that correspond to different pairs of the branches
kj (ω,X) are completely independent. The lines from different sets may intersect at
any point and even coincide. Hence, the routine described above can be performed
independently for each set.
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